Statistics MCQ Quiz - Objective Question with Answer for Statistics - Download Free PDF

Last updated on Sep 19, 2022

Latest Statistics MCQ Objective Questions

Statistics MCQ Question 1:

The mean of 25 observations is 36 . If the mean of the first 13 observations is 32 and that of the last 13 observations is 39 , the 13th observation is: 

  1. 22
  2. 25
  3. 26
  4. 23

Answer (Detailed Solution Below)

Option 4 : 23

Statistics MCQ Question 1 Detailed Solution

Given:

The mean of 25 observations is 36

The mean of the first 13 observations is 32 and that of the last 13 observations is 39 

Concept used:

Mean = sum of all observation/total number of observation

Calculation:

The sum of all 25 observation = 25 × 36 = 900

Sum of first 13 observations = 13 × 32 = 416

Sum of last 13 observations = 13 × 39 = 507

∴ 13th term = (416 + 507) - 900 = 923 - 900 = 23

Statistics MCQ Question 2:

If a variable takes discrete values a + 4, a - 3.5, a - 2.5, a - 3, a - 2, a + 0.5, a + 5 and a - 0.5 where a > 0, then the median of the data set is

  1. a - 2.5
  2. a - 1.25
  3. a - 1.5
  4. a - o.75

Answer (Detailed Solution Below)

Option 2 : a - 1.25

Statistics MCQ Question 2 Detailed Solution

Given:

The given values =  a + 4, a – 3.5, a – 2.5, a – 3, a – 2, a + 0.5, a + 5 and a – 0.5

Concept used:

If n is odd

Median = [(n + 1)/2]th observations

If n is even

Median = [(n/2)th + (n/2 + 1)th observations]/2

Calculation:

a + 4, a – 3.5, a – 2.5, a – 3, a – 2, a + 0.5, a + 5 and a – 0.5

Arrange the data in ascending order

⇒ a – 3.5, a – 3, a – 2.5, a – 2, a – 0.5, a + 0.5, a + 4, a + 5

Here, the n is 8, which is even

Median =  [(n/2)th + (n/2 + 1)th observations]/2

⇒ [(8/2) + (8/2 + 1)/2] term

⇒ 4th + 5th term

⇒ [(a – 2 + a – 0.5)/2]

⇒ [(2a – 2.5)/2]

⇒ a – 1.25

∴ The median of the data set is a – 1.25

Statistics MCQ Question 3:

Comprehension:

Prices of shares of X and Y are given below.

X: 35 54 52 53 56 58 52 50 51 49
Y: 108 107 105 105 106 107 104 103 104 101

Use the data to answer the following questions.

Which one among X and Y is more stable

  1. X
  2. Y
  3. Both are same
  4. Insufficient data

Answer (Detailed Solution Below)

Option 1 : X

Statistics MCQ Question 3 Detailed Solution

Concept:

Variance (X) = \(\frac{\sum(X_i-\bar X)^2}{n}\) 

Standard Deviation = \(\sqrt{Variance }\)

Coefficient of variation for X = \(\frac{SD}{\bar X}\times 100 \) where X̅ is the means of observation.

Calculation:

For the prices of shares X:

Xi di = (X- X̅ )

di2

35 35 - 48 = -13 169
24 24 - 48 = -24 576
52 52 - 48 = 4 16
53 53 - 48 = 5 25
56 56 - 48 = 8 64
58 58 - 48 = 10 100
52 52 - 48 = 4 16
50 50 - 48 = 2 4
51 51 - 48 = 3 9
49 49 - 48 = 1 1
Total = 480   Total = 980

Here, n = 10

X̅ = \(\frac{1}{n}\sum X_i\)

⇒ X̅ = \(\frac{35+54+52+53+56+58+52+50+51+49}{10}\) = \(\frac{480}{10}=48\)

Variance (X) = \(\frac{\sum(X_i-\bar X)^2}{n}\) = \(\frac{\sum d^2}{n}\) = \(\frac{980}{10}=98\)

SD(X) = \(\sqrt{Var(X)} \) = √98 = 9.9

Coefficient of variation for X = \(\frac{SD}{\bar X}\times 100 \) = \(\frac{9.9}{48}\times 100 = 20.6\)      ------(i)

For the prices of shares Y:

Yi di = (Y- Y̅) di2
108 108 - 105 = 3 9
107 107 - 105 = 2 4
105 105 - 105 = 0 0
105 105 - 105 = 0 0
106 106 - 105 = 1 1
107 107 - 105 = 2 4
104 104 - 105 = -1 1
103 103 - 105 = -2 4
104 104 - 105 = -1 1
101 101 - 105 = -4 16
Total = 480   Total = 40

Here, n = 10

Y̅  = \(\frac{1}{n}\sum Y_i\)

⇒ Y̅  = \(\frac{108+107+105+105+106+107+104+103+104+101}{10}\) = \(\frac{1050}{10}=105\)

Variance (Y) = \(\frac{\sum(Y_i-\bar Y)^2}{n}\) = \(\frac{\sum di^2}{n}\) = \(\frac{40}{10}=4\)

SD(Y) = \(\sqrt{Var(Y)} \) = = √4 = 2

Coefficient of variation for Y \(\frac{SD}{\bar Y}\times 100 \) = \(\frac{2}{105}\times 100 = 1.90 \)      ------(ii)

Comparing the equation (i) and (ii), coefficient of variation of Y is smaller than that of X.

∴ X is more stable than Y.

Statistics MCQ Question 4:

Comprehension:

Prices of shares of X and Y are given below.

X: 35 54 52 53 56 58 52 50 51 49
Y: 108 107 105 105 106 107 104 103 104 101

Use the data to answer the following questions.

Standard devaition of Y is

  1. 1.90
  2. 105
  3. 4
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Statistics MCQ Question 4 Detailed Solution

Concept:

Variance (X) = \(\frac{\sum(X_i-\bar X)^2}{n}\) 

Standard Deviation = \(\sqrt{Variance }\)

Coefficient of variation for X = \(\frac{SD}{\bar X}\times 100 \) where X̅ is the means of observation.

Calculation:

Yi di = (Y- Y̅) di2
108 108 - 105 = 3 9
107 107 - 105 = 2 4
105 105 - 105 = 0 0
105 105 - 105 = 0 0
106 106 - 105 = 1 1
107 107 - 105 = 2 4
104 104 - 105 = -1 1
103 103 - 105 = -2 4
104 104 - 105 = -1 1
101 101 - 105 = -4 16
Total = 480   Total = 40

Here, n = 10

For the prices of shares Y:

Y̅  = \(\frac{1}{n}\sum Y_i\)

⇒ Y̅ \(\frac{108+107+105+105+106+107+104+103+104+101}{10}\) = \(\frac{1050}{10}=105\)

Variance (Y) = \(\frac{\sum(Y_i-\bar Y)^2}{n}\) = \(\frac{\sum di^2}{n}\) = \(\frac{40}{10}=4\)

SD(Y) = \(\sqrt{Var(Y)} \)

⇒ SD(Y) = √4 = 2

∴ Standard deviation of Y is 2.

Statistics MCQ Question 5:

Comprehension:

Prices of shares of X and Y are given below.

X: 35 54 52 53 56 58 52 50 51 49
Y: 108 107 105 105 106 107 104 103 104 101

Use the data to answer the following questions.

Variance of X is

  1. 98
  2. 9.9
  3. 48
  4. 20.6

Answer (Detailed Solution Below)

Option 1 : 98

Statistics MCQ Question 5 Detailed Solution

Concept:

Variance (X) = \(\frac{\sum(X_i-\bar X)^2}{n}\) 

Standard Deviation = \(\sqrt{Variance }\)

Coefficient of variation for X = \(\frac{SD}{̅ X}\times 100 \) where X̅ is the means of observation.

Calculation:

Xi di = (X- X̅ )

di2

35 35 - 48 = -13 169
24 24 - 48 = -24 576
52 52 - 48 = 4 16
53 53 - 48 = 5 25
56 56 - 48 = 8 64
58 58 - 48 = 10 100
52 52 - 48 = 4 16
50 50 - 48 = 2 4
51 51 - 48 = 3 9
49 49 - 48 = 1 1
Total = 480   Total = 980

Here, n = 10

For the prices of shares X:

⇒ X̅ = \(\frac{1}{n}\sum X_i\)

⇒ X̅ = \(\frac{35+24+52+53+56+58+52+50+51+49}{10}\) = \(\frac{480}{10}=48\)

Variance (X) = \(\frac{\sum(X_i-\bar X)^2}{n}\) = \(\frac{\sum d^2}{n}\) = \(\frac{980}{10}=98\)

∴ The Variance of X is 98.

Top Statistics MCQ Objective Questions

What is the mean of the range, mode and median of the data given below?

5, 10, 3, 6, 4, 8, 9, 3, 15, 2, 9, 4, 19, 11, 4

  1. 10
  2. 12
  3. 8
  4. 9

Answer (Detailed Solution Below)

Option 4 : 9

Statistics MCQ Question 6 Detailed Solution

Download Solution PDF

Given:

The given data is 5, 10, 3, 6, 4, 8, 9, 3, 15, 2, 9, 4, 19, 11, 4

Concept used:

The mode is the value that appears most frequently in a data set

At the time of finding Median

First, arrange the given data in the ascending order and then find the term

Formula used:

Mean = Sum of all the terms/Total number of terms

Median = {(n + 1)/2}th term when n is odd 

Median = 1/2[(n/2)th term + {(n/2) + 1}th] term when n is even

Range = Maximum value – Minimum value 

Calculation:

Arranging the given data in ascending order 

2, 3, 3, 4, 4, 4, 5, 6, 8, 9, 9, 10, 11, 15, 19

Here, Most frequent data is 4 so 

Mode = 4

Total terms in the given data, (n) = 15 (It is odd)

Median = {(n + 1)/2}th term when n is odd 

⇒ {(15 + 1)/2}th term 

⇒ (8)th term

⇒ 6 

Now, Range = Maximum value – Minimum value 

⇒ 19 – 2 = 17

Mean of Range, Mode and median = (Range + Mode + Median)/3

⇒ (17 + 4 + 6)/3 

⇒ 27/3 = 9

∴ The mean of the Range, Mode and Median is 9

Find the mean of given data:

 class interval 10-20 20-30 30-40 40-50 50-60 60-70 70-80
 Frequency 9 13 6 4 6 2 3

  1. 39.95
  2. 35.70
  3. 43.95
  4. 23.95

Answer (Detailed Solution Below)

Option 2 : 35.70

Statistics MCQ Question 7 Detailed Solution

Download Solution PDF

Formula used:

The mean of grouped data is given by,

\(\bar X\ = \frac{∑ f_iX_i}{∑ f_i}\)

Where, \(u_i \ = \ \frac{X_i\ -\ a}{h}\)

Xi = mean of ith class

f= frequency corresponding to ith class

Given:

class interval 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency 9 13 6 4 6 2 3


Calculation:

Now, to calculate the mean of data will have to find ∑fiXi and ∑fi as below,

Class Interval fi Xi fiXi
10 - 20 9 15 135
20 - 30 13 25 325
30 - 40 6 35 210
40 - 50 4 45 180
50 - 60 6 55 330
60 - 70 2 65 130
70 - 80 3 75 225
  ∑fi = 43 ∑X = 315 ∑fiXi = 1535


Then,

We know that, mean of grouped data is given by

\(\bar X\ = \frac{∑ f_iX_i}{∑ f_i}\)

\(\frac{1535}{43}\)

= 35.7

Hence, the mean of the grouped data is 35.7

If mean and mode of some data are 4 & 10 respectively, its median will be:

  1. 1.5
  2. 5.3
  3. 16
  4. 6

Answer (Detailed Solution Below)

Option 4 : 6

Statistics MCQ Question 8 Detailed Solution

Download Solution PDF

Concept:

Mean: The mean or average of a data set is found by adding all numbers in the data set and then dividing by the number of values in the set.

Mode: The mode is the value that appears most frequently in a data set.

Median: The median is a numeric value that separates the higher half of a set from the lower half. 

Relation b/w mean, mode and median:

Mode = 3(Median) - 2(Mean)

Calculation:

Given that,

mean of data = 4 and mode of  data = 10

We know that

Mode = 3(Median) - 2(Mean)

⇒ 10 = 3(median) - 2(4)

⇒ 3(median) = 18

⇒ median = 6

Hence, the median of data will be 6.

If the standard deviation of 0, 1, 2, 3 ______ 9 is K, then the standard deviation of 10, 11, 12, 13 _____ 19 will be:

  1. K + 1
  2. K
  3. K + 4
  4. K + 8

Answer (Detailed Solution Below)

Option 2 : K

Statistics MCQ Question 9 Detailed Solution

Download Solution PDF

Formula Used

  • σ2 = ∑(xi – x)2/n
  • Standard deviation is same when each element is increased by the same constant

Calculation:

Since each data increases by 10,

There will be no change in standard deviation because (xi – x) remains same.

∴ The standard deviation of 10, 11, 12, 13 _____ 19 will be will be K.

Alternate Method 

Find the median of the given set of numbers 2, 6, 6, 8, 4, 2, 7, 9

  1. 6
  2. 8
  3. 4
  4. 5

Answer (Detailed Solution Below)

Option 1 : 6

Statistics MCQ Question 10 Detailed Solution

Download Solution PDF

Concept:

Median: The median is the middle number in a sorted- ascending or descending list of numbers.

Case 1: If the number of observations (n) is even

\({\rm{Median\;}} = {\rm{\;}}\frac{{{\rm{value\;of\;}}{{\left( {\frac{{\rm{n}}}{2}} \right)}^{{\rm{th}}}}{\rm{\;observation\;}} + {\rm{\;\;value\;of\;}}{{\left( {\frac{{\rm{n}}}{2}{\rm{\;}} + 1} \right)}^{{\rm{th}}}}{\rm{\;observation}}}}{2}\)

Case 2: If the number of observations (n) is odd

\({\rm{Median\;}} = {\rm{value\;of\;}}{\left( {\frac{{{\rm{n}} + 1}}{2}} \right)^{{\rm{th}}}}{\rm{\;observation}}\)

 

Calculation:

Given values 2, 6, 6, 8, 4, 2, 7, 9

Arrange the observations in ascending order:

2, 2, 4, 6, 6, 7, 8, 9

Here, n = 8 = even

As we know, If n is even then,

\({\rm{Median\;}} = {\rm{\;}}\frac{{{\rm{value\;of\;}}{{\left( {\frac{{\rm{n}}}{2}} \right)}^{{\rm{th}}}}{\rm{\;observation\;}} + {\rm{\;\;value\;of\;}}{{\left( {\frac{{\rm{n}}}{2}{\rm{\;}} + 1} \right)}^{{\rm{th}}}}{\rm{\;observation}}}}{2}\)

\(\rm \frac{4^{th} \;\text{observation}+5^{th} \;\text{observation}}{2} \)

\(\frac{6+6}{2} =6\)

Hence Median = 6